† co-first authors
* corresponding author

 

Peer-Reviewed Publications at UCR

 

33. Quantum Interference in a Molecular Analog of the Crystalline Silicon Unit Cell.

Hight, M. O.; Pimentel, A. E.; Siu, T. C.; Wong, J. Y.; Nguyen, J.; Carta, V.; Su, T. A.*
Manuscript submitted. ChemRXiv link.

This manuscript describes destructive quantum interference effects that emerge from the symmetry and dimensionality of Si diamondoid structures. We exploit these principles to create a conductance switch that operates by toggling which diamondoid bridge paths the electrodes align through.

 

32. Intermediate Electronic Coupling via Silane and Germane Bridges in Silicon Quantum Dot-Molecular Hybrid Systems.

Nguyen, N. Q.; Lewis, S. G.; Wang, K.; Wang, H.; Gonzalez, A.; Mangolini, L.; Roberts, S. T.; Tang, M. L.;* Eaves, J. D.;* Su, T. A.*
Nano Lett. 2025 ASAP.

Here we reveal for the first time a general synthetic approach for attaching arylsilanes and germanes to Si quantum dot surfaces. These tetrane bridges enable access to a new electronic coupling regime that is intermediate between conventional alkane and alkene molecular bridges.

 

31. Single-Molecule Conductance of Staffanes.

Pimentel, A. E.;Pham, L. D.; Carta, V.; Su, T. A.*
Angew. Chem. Int. Ed. 2024, e202415978.
First posted on ChemRXiv.

This article shows that bicyclic ring strain can be used to increase charge transport efficiency in σ-bonded molecular wires through destabilization of occupied frontier molecular orbitals.

 

30. Opportunities in Main Group Molecular Electronics.

Hight, M. O.; Su, T. A.*
Trends Chem. 2024, 6, 365-376.
• Invited contribution for ‘Emerging Leaders in Chemistry’ issue.
• 
TrendsTalk Author Profile Feature

This work describes a new area of nanoscience that we have termed “main group molecular electronics”, where we are exploiting the unique structure and bonding of main group compounds to discover new quantum transport phenomena.

 

29. Intramolecular London Dispersion Interactions in Single-Molecule Junctions.

Hight, M. O.; Wong, J. Y.; Pimentel, A. E.; Su, T. A.*
J. Am. Chem. Soc. 2024, 146, 4716-4726. 
First posted on
ChemRXiv.

This article reveals the first example of using intramolecular London dispersion interactions to control quantum transport in molecular electronics. We apply these principles in poly(dimethylsilmethylene) wires to make the most resistive materials ever studied, on a length-dependent basis.

 

28. Installing Quaternary Germanium Centers in Sila-Diamondoid Cores via Skeletal Isomerization.

Aguirre Cardenas, M. I.; Siu, T. C.; Pimentel, A. E.; Hight, M. O.; Shimono, M. G.; Thai, S.; Carta, V.; Su, T. A.*
J. Am. Chem. Soc. 2023, 145, 20588-20594.
First posted on
ChemRXiv.
• Featured in
JACS Spotlights.

This article reveals skeletal isomerization strategies to precisely dope sila-diamondoid cores with Ge atoms. We enact these transformations through two approaches: skeletal editing and Ge loading in strained precursors.

 

27. Site-Selective Functionalization of Sila-Adamantane and Its Ensuing Optical Effects.

Siu, T. C.; Aguirre Cardenas, M. I.; Seo, J.; Boctor, K.; Shimono, M. G.; Tran, I. T.; Carta, V.; Su, T. A.*
Angew. Chem. Int. Ed. 2022, 61, e202206877.
• Selected as a “Hot Paper” by the Editors
• 
Angewandte Introducing Author Profile Feature

This article shows we can precisely control the peripheral structure of sila-adamantane at five discrete locations. These synthetic methods enable us to uncover how the site of surface substitution in crystalline silicon influences its optoelectronic properties for the very first time.

 

26. Oxidation State-Specific Fluorescent Copper Sensors Reveal Oncogene-Driven Redox Changes that Regulate Labile Copper(II) Pools.

Pezacki, A. T.; Matier, C. D.; Gu, X.; Kummelstedt, E.; Bond, S. E.; Torrente, L.; Jordan-Sciutto, K. L.; DeNicola, G. M.; Su, T. A.;* Brady, D. C.;* Chang, C. J.*
Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e2202736119.

This work applies hard-soft acid-base principles to selectively label cuproproteins in a redox-selective manner (i.e., Cu(II) over Cu(I) speciation), revealing new insight into the role of copper in cancer processes.

 

25. π-Conjugated Organosilanes at the Nexus of Single-Molecule Electronics and Imaging.

Pham, L. D.; Nguyen, N. Q.; Hight, M. O.; Su, T. A.*
J. Mater. Chem. C 2021, 9, 11605-11618.
• Invited contribution for 2021 Emerging Investigators Issue.

This article explores how σ–π orbital interactions in molecular organosilane materials manifest in emerging single-molecule technologies.

This article explores how σ–π orbital interactions in molecular organosilane materials manifest in emerging single-molecule technologies.

 

24. Single-Cluster Electronics.

Siu, T. C.; Wong, J. Y.; Hight, M. O.; Su, T. A.*
Phys. Chem. Chem. Phys. 2021, 23, 9643–9659.
• Invited contribution

This article explores how the structure and bonding of inorganic cluster compounds give rise to desirable quantum transport effects.

This article explores how the structure and bonding of inorganic cluster compounds give rise to desirable quantum transport effects.

 

23. Chemical Anthropomorphism: Acting Out General Chemistry Concepts in Social Media Videos Facilitates Student-Centered Learning and Public Engagement.

Hight, M. O.; Nguyen, N. Q.; Su, T. A.*
J. Chem. Educ. 2021, 98, 1283–1289.
First posted on ChemRXiv.
• Activity featured in
Massive Science
• Videos from this activity have received over
3 million views

This article describes how TikTok videos can be harnessed as a vehicle for chemical education and outreach.

This article describes how TikTok videos can be harnessed as a vehicle for chemical education and outreach.

 

EDITORIALS At UCR

 

22. Themed Collection on Molecular Scale Electronics.

Su, T. A.*; Inkpen, M. S.*; Li, H.*
J. Mat. Chem. C. 2024, 12, 7830-7832.
• Guest editorial for special issue on molecular scale electronics.

Guest-edited issue of JMCC with Mike Inkpen (USC) and Haixing Li (CUHK) on emerging areas of molecular scale electronics.

 

21. Conductivity in Porous 2D Materials Made Crystal Clear.

Siu, T. C.; Su, T. A.*
ACS Cent. Sci. 2020, 11, 9–11.

This First Reactions commentary contextualizes the significance of conductive single-crystal MOF devices made by Dincă and coworkers.

This First Reactions commentary contextualizes the significance of conductive single-crystal MOF devices made by Dincă and coworkers.


Peer-Reviewed Publications Before UCR

20. Permethylation Introduces Destructive Quantum Interference in Saturated Silanes.

Garner, M. H.; Li, H.; Neupane, M.; Zou, Q.; Liu, T.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Ng, F.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G.
J. Am. Chem. Soc. 2019, 14139, 15471–76.

 

19. Caged Luciferins for Bioluminescent Activity-Based Sensing.

Su, T. A.; Bruemmer, K. J.; Chang, C. J. 
Curr. Opin. Biotechnol. 2019, 60, 198–204.

 

18. Effects of Copper Chelation on BRAFV600E Positive Colon Carcinoma Cells.

Baldari, S.; Di Rocco, G.; Heffern, M. C.; Su, T. A.; Chang, C. J.; Toietta, G.
Cancers 201911, 659.

 

17. A Modular Ionophore Platform for Liver-Directed Copper Supplementation in Cells and Animals.

Su, T. A.; Shihadih, D.; Cao, W.; Detomasi, T. C.; Heffern, M. C.; Stahl, A.; Chang, C. J.
J. Am. Chem. Soc. 2018, 140, 13764–74.
Featured in
JACS Spotlights.

 

16. Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde from Folate Degradation in Living Mice.

Bruemmer, K. J.;† Green, O.;† Su, T. A.;† Shabat, D.; Chang, C. J. 
Angew. Chem. Int. Ed. 2018, 57, 7508–12.

 

15. Comprehensive Suppression of Single-Molecule Conductance Using Destructive σ–Interference.

Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C.
Nature 2018, 558, 415–419.
Featured in
EurekAlert, Nanowerk, ECN Mag, Xinhua, Nanotechnology Now, Phys.org

 

14. Large Variations in Single Molecule Conductance of Cyclic and Bicyclic Silanes.

Li, H.; Garner, M. H.; Shangguan, Z.; Chen, Y.; Zheng, Q.; Su, T. A.; Neupane, M.; Liu, T.; Steigerwald, M. L.; Ng, F.; Nuckolls, C.; Xiao, S.; Solomon, G. C.;
Venkataraman, L.
J. Am. Chem. Soc. 2018, 140, 15080–15088.

 

13. Silver Makes Better Electrical Contacts to Thiol-Terminated Silanes than Gold.

Li, H.;† Su T. A.;† Camarasa-Gomez, M.; Hernangomez-Perez, D.; Henn, S. E.; Pokorny, V.; Caniglia, C. D.; Inkpen, M. S.; Korytar, R.; Steigerwald, M. L.; Nuckolls, C.; Evers, F.; Venkataraman, L.
Angew. Chem. Int. Ed. 2017, 129, 14145–48

 

12. Extreme Conductance Suppression in Molecular Siloxanes.

Li, H.;† Garner, M. H.† Su, T. A.† Jensen, A.; Inkpen, M. S.; Steigerwald, M. L.; Venkataraman, L.; Solomon, G. C.; Nuckolls, C.
J. Am. Chem. Soc. 2017, 139, 10212–15.

Featured in Scientific American, Chemistry World, Compound Interest.

 

11. Silane and Germane Molecular Electronics.

Su, T. A.; Li, H.; Klausen, R. S.; Kim, N. T.; Neupane, M.; Leighton, J. L.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. 
Acc. Chem. Res. 2017, 50, 1088–95.

 

10. Mechanism for Si-Si Bond Rupture in Single-Molecule Junctions.

Li, H.; Kim, N. T.; Su, T. A.; Steigerwald, M. L.; Nuckolls, C.; Darancet, P.; Leighton, J. L.; Venkataraman, L.
J. Am. Chem. Soc. 2016, 138, 16159–64.

Featured as JACS Cover

 

9. Tuning Conductance in π−σ−π Single-Molecule Wires.

Su, T. A.;† Li, H.;† Klausen, R. S.; Widawsky, J. R.; Batra, A.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C.
J. Am. Chem. Soc. 2016, 138, 7791–95.

 

8. Conformations of Cyclopentasilane Stereoisomers Control Molecular Junction Conductance.

Li, H.; Garner, M. H.; Zhichun, S.; Zheng, Q.; Su, T. A.; Neupane, M.; Velian, A.; Xiao, S.; Steigerwald M. L.; Nuckolls, C.; Venkataraman, L.
Chem. Sci. 2016, 7, 5657–62.

 

7. Chemical Principles of Single-Molecule Electronics.

Su, T. A.; Neupane, M.; Steigerwald, M. L; Venkataraman, L.; Nuckolls, C. 
Nat. Rev. Mater. 2016, 16002, 1–15. 

 

6. Single-Molecule Conductance in Atomically Precise Germanium Wires.

Su, T. A.;† Li, H.;† Zhang, V.; Neupane, M.; Batra, A.; Klausen, R. S.; Kumar, B.; Steigerwald, M. L; Venkataraman, L.; Nuckolls, C.
J. Am. Chem. Soc. 2015, 137, 12400–05.

 

5. Electric Field Breakdown in Single-Molecule Junctions.

Li, H.; Su, T. A.; Zhang, V.; Steigerwald, M. C.; Nuckolls, C.; Venkataraman, L.
J. Am. Chem. Soc. 2015, 137, 5028–33. 

Featured in JACS Cover, JACS Spotlight

 

4. Stereoelectronic Switching in Single Molecule Junctions.

Su, T. A.; Li, H.; Steigerwald, M. L; Venkataraman, L.; Nuckolls, C.
Nat. Chem. 2015, 7, 215–20.

Featured in Nature Chemistry Editorial, Phys.org

 

3. Evaluating Atomic Components in Fluorene Wires.

Klausen, R. S.; Widawsky, J. R.; Su, T. A.; Li, H.; Chen, Q.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. 
Chem. Sci. 2014, 5, 1561–64.

 

2. Silicon Ring Strain Creates High Conductance Pathways in Single-Molecule Circuits.

Su, T. A.; Widawsky, J. R.; Li, H.; Klausen, R. S.; Leighton, J. L.;
Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C.
J. Am. Chem. Soc. 2013, 135, 18331–34. 

 

1. Electron Transfer Dynamics of Triphenylamine Dyes Bound to TiO2 Nanoparticles from Femtosecond Stimulated Raman Spectroscopy.

Hoffman, D. P.; Lee, O. P.; Millstone, J. E.; Chen, M. S.; Su, T. A.; Creelman, M.; Fréchet, J. M. J.; Mathies, R. A.
J. Phys. Chem C. 2013, 117, 6990–97. 

Patents

2. Targeted Ionophore-Based Metal Delivery.

Chang, C. J.; Su, T. A.; Heffern, M. C. U.S. Patent WO US-2020-0113937, April 16, 2020.

1. Quantum Interference Based Single-Molecule Insulators.

Nuckolls, C.; Venkataraman, L.; Solomon, G. C.; Li, H.; Su, T. A.; Paley, D. W.; Ng, F.
U.S. Application No. 62/637,932, March 2, 2018.